Пример 35. Плата расширения для двигателей на L293D

Примеры

ПРИМЕРЫ

Двигатели постоянного тока потребляет очень большой ток. И для того, чтобы управлять ими требуются специальные силовые транзисторные ключи. Существуют специальные микросхемы, которые заточены под эту задачу, например, L293D. А для плат Arduino существует уже готовое решение — плата расширения для двигателей на L293D.

Мотор-шилды на основе микросхем L293D и L298N являются самыми популярными драйверами для управления моторами постоянного тока. Данная плата расширения позволяет подключить 4 DC-мотора (либо 2 шаговых двигателя) и два серводвигателя.

Плата расширения для двигателей на L293D

На борту данного шилда имеется две микросхемы L293D (1). Она позволяет управлять слаботочными двигателями с током потребления до 600 мА на канал. На двух пятипиновых клеммниках (2) можно насчитать 4 разъема для подключения двигателей (M1, M2, M3, M4), центральные выводы на пятипиновых клеммниках соединены с землей и служат для удобства при подключении пятипроводных шаговый двигателей. Использование двух микросхем L293D позволяет одновременно подключить 4 моторчика постоянного тока или 2 шаговых двигателя, либо два DC-моторчика и шаговик. Для управления на прямую выводами L-ки (IN1, IN2, IN3, IN4), отвечающимими за выбор направления вращения, необходимо 4 вывода, а для двух микросхем целых 8. Для уменьшения количества управляющих выводов используется сдвиговый регистр 74НС595 (3). Благодаря регистру управление сводится с 8-ми пинов к 4-м. Также, на плату выведены 2 разъема для подключения сервоприводов (4). Управление сервоприводами стандартное с помощью библиотеки Servo.h. Питание силовой части производится либо от внешнего клеммника (5), либо замыканием джампера (6) (питание от клеммника моторов +M соединяется с выводом Vin Arduino). При замкнутом джампере напряжение для объединенного питания должно лежать в пределах от 6 до 12 В.

К минусам данного шилда можно отнести то, что он задействует практически все цифровые пины.

Выводы, отвечающие за скорость вращения двигателей:

  • Цифровой вывод 11 – DC Мотор №1 / Шаговый №1
  • Цифровой вывод 3 – DC Мотор №2 / Шаговый №1
  • Цифровой вывод 5 – DC Мотор №3 / Шаговый №2
  • Цифровой вывод 6 – DC Мотор №4 / Шаговый №2

Выводы, отвечающие за выбор направления вращения двигателей:

  • Цифровые выводы 4, 7, 8 и 12

Выводы для управления сервоприводами (выведены на штырьки на краю платы):

  • Цифровой вывод 9 – Сервопривод №1
  • Цифровой вывод 10 – Сервопривод №2

В итоге незадействованными цифровыми выводами остаются только пины 2, 13 и пины интерфейса UART – 0, 1. Однако есть выход из данной ситуации. У нас остались незадействованные аналоговые входы A0 – A6, их можно использовать как цифровые. В коде они будут записываться как цифровые с 14 по 19.

Плата расширения для двигателей на L293D


Описание:

В данном примере с помощью мотор-шилда на L293D будем одновременно управлять 4 двигателями постоянного тока (меняя скорость и направление). Для подключения шилда достаточно вставить его в плату Arduino Uno. Для работы с данным шилдом необходимо скачать библиотеку AFMotor.


Схема:

Мотор-шилд на L293D: Подключение 4 моторов


Скетч: